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ABSTRACT
Analysis of crime scenes involving single-fire-gun projectiles requires the determination of
the direction of arrival of a projectile at the target and other factors to reconstruct events.
The movement of a projectile can be analyzed by applying Euler’s equations to a solid sym-
metrical rigid body. The present work starts from a Newtonian reformulation of these equa-
tions to show that, in the presence of a gravitational field, the system can be expressed
with a complex variable nonlinear equation, where the inclusion of small nutation variables
allows us to find possible solutions. As a particular case, we analyzed the movement of a
9-mm projectile fired from distances greater than 1m to demonstrate that the direction of
arrival of the projectile at the target cannot be traced by a stick placed in the target hole, as
is usually performed in crime investigations. A series of shots were fired from distances vary-
ing between 1m and 7m. Impact data were recorded on Riemann planes of projection for
the description of nutation and precession motions, allowing the observation of the motion
dynamics of the projectile. We show that the direction of arrival at the target can be deter-
mined approximately from the analysis of the nutation and precession curves through
Riemann planes of projection. The results presented in this work will allow more accurate
judgements to be made in judicial investigations.
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Introduction

It is a fundamental matter to determine the charac-
teristics of shots fired in scenarios where firearms
have been used. The correct determination of these
characteristics allows a more accurate investigation
that identifies a possible location from which shots
have been fired and the firearm used. The estimation
of the bullet trajectory traditionally starts by placing
a fibreglass rod into the bullet hole of the target.
Although this procedure is inaccurate, it is, at least,
possible to infer geometrical parameters that can be
used in rebuilding the kinematics (i.e. both trajectory
and tumbling movement) of a projectile.

Euler equations or their Newtonian, Lagrangian
and Hamiltonian reformulations are usually
employed to describe the movement of a symmetric
solid body, namely a bullet. Previous work [1]
showed that in the presence of dissipative forces and
a gravitational field, such equations can be reduced
to a nonlinear equation over the components of the
Riemann stereoscopic projection of the main vector
on a plane tangent to the tip of the projectile in the
direction of the gravitational field. Under the
approximation of small-amplitude nutations, a

solution to the equation can be found and modified
to include the movement of the projectile [1].

Projectile motion can be explained theoretically
in an approximate way using the Lagrangian formu-
lation of Newtonian mechanics. However, this
explanation remains imprecise and incomplete. The
projectile motion exhibits a more intuitive physical
richness in that it is not limited to elliptical motion
but also presents nutation and precession move-
ments. Such motions of nutation and precession are
not well described by less-elaborated formulations of
mechanics. The study of such nutation and preces-
sion is important in that it allows us to describe the
precise path followed by the projectile and the initial
conditions of the shooting.

There are no reports of the described experimen-
tation or quantification and qualification of ballistic
elements for different-calibre projectiles because the
experiments are expensive and difficult to process
with the authorities. The police and army are the
only parties allowed to possess high-calibre weapons
and ammunition. It is thus difficult for a civilian or
academic institution to conduct experiments even
though experimental techniques will be easily repro-
ducible if bureaucratic obstacles are overcome.
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The aim of the present work is to show that the
gyroscopic motion of a bullet fired by a firearm dir-
ectly shapes the figure of the target hole, contradict-
ing conclusions that might be made about the
trajectory on the basis of the aforementioned rod
procedure. Therefore, another degree of freedom is
added to the problem of the trajectory that must be
resolved in subsequent investigations.

We compare the description of the motion of a
commercial gyroscope that exhibits epicyclic move-
ment with the same motion of a 9-mm bullet in
flight and over Riemann planes of projection (RPPs).
To this end, we examine the incidence of projectiles
into targets using the data of experiments and ballis-
tic tests. Such data reveal the nutation and precession
movements, which are generally observed in compu-
tational simulations but not experimentally.

The present paper is arranged as follows. The
second section presents the methodology imple-
mented and describes the experiment and its theo-
retical framework. The third section summarizes our
main findings. The fourth section discusses the
results and presents conclusions.

Materials and methods

Euler equations are used to establish the relationship
among the distance, direction of firing by the firearm
and the projectile entrance footprint. This paper presents
an experiment that, on the basis of the footprints of pro-
jectiles on RPPs, reveals that the initial firing conditions
and the trajectory may not coincide with the projectile
entry angles in the target for any firing distance.

Description of the experiment

Twenty-five sheets of straw cardboard were used as
RPPs. The sheets had low impact resistance so to
smoothly destabilize the projectile and produce a
clear footprint. The RPPs each had an area of
17.5 cm by 25 cm and a thickness of 0.095mm. The
RPPs were placed at intervals of 25 cm. There was a
sequence of 25 planes per round of firing. In this
way, a clear bullet footprint was registered for each
plane, allowing the extraction of all required informa-
tion. The shooter was initially located 1m from the
first RPP in the sequence, and the distance between
the shooter and the first RPP was then increased in
intervals of 1m to a final distance of 7m.

Angles and longitudes were directly measured
using digital calibrators for all footprints, giving the
plane of incidence of the projectile or RPP. Figure 1
presents measurements of the size of the footprint
made by the projectile and the angles that allow the
determination of the quantities associated with pre-
cession and nutation from the projectile profile.

Equations of motion and parametrization for the
projectile case

The complete motion of the projectile is determined
by the forces and torques acting on the projectile
(Figure 2). All these effects determine the conditions
of motion of the projectile’s centre of gravity.

Inside a gun, the advance of the projectile is
guided by the bore of the barrel. The bore imprints
a rotation motion on the projectile using several
helical guiding fields with left and right inclinations.
The bullet faces environmental perturbations when
it leaves the barrel muzzle. The bullet continues to
travel with an attack vector, resulting in an aero-
dynamic re-elevation phenomenon that vanishes
inside the weapon. Such perturbations are due to
the interactions of gases in the muzzle and the local
atmospheric air over a short time interval, which is
known as the ballistic wind phenomenon [2].

As the projectile travels through air, the motion
of the centre of gravity is determined by Newton’s
second law (Equation (2.1)):

m _v ¼ FW þ Fd þ Fl þ FM: (2.1)

Air resistance generates forces and moments that
act on the projectile and can be determined

Figure 1. Vectoral diagram showing the attack vector and
its relationship with angles and angular velocities.

Figure 2. Diagram of the principal forces acting on a pro-
jectile. Fl is the lifting force, Fd is the aerodynamic friction,
~x3 is the rotational velocity component along the e03 axis, ~l
is the aerodynamic torque, and a is the angle of attack. Cg
and Ce are the centres of gravity and lift, respectively.
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experimentally using aerodynamic coefficients.
These coefficients are not necessarily constant and
can be expressed as complex polynomial functions,
which in turn depend on the projectile attack angle
and variables dependent on the Mach number (0.94
for 9-mm ammunition). Aerodynamic coefficients
are usually evaluated in subsonic and supersonic
tunnels depending on the case [3].

To better understand the characteristics of a fly-
ing projectile, additional concepts, such as those
determining docility and stability, must be consi-
dered because these characteristics are what make
each flying projectile unique [3].

The projectile stability depends on the rotation
speed, which must be adjusted such that the effects
of the medium, such as air and gravity, do not turn
the direction of the tangent axis ê0 away from the tra-
jectory. This is how damped gyroscopic motion is
generated. Despite environmental interactions, the
deviation of the tip of the projectile is negligible if the
docility is small, which we can ensure. In such a case,
the docility is due only to nutation and precession.
The projectile is said to be stable if it does not turn
under environmental effects. Docility is defined as

dr
2g
v

ffiffiffiffiffiffiffiffi
I2Ss
l

s
: (2.2)

Attack vector and essential stability of
the projectile

A projectile moving around its centre of mass has a
rotational velocity ~x with two components, i.e. the
rotational velocity around the principal rotation
axis, ~x3, due to the projectile’s own rotation and
the transversal or perpendicular component
that is in the plane formed by ê1 and ê2, denoted
~x? ¼ ~x1 þ ~x2 (Figure 1).

When a rigid body rotates around a principal
inertial axis, the angular momentum ~L is parallel to
the angular velocity ~x and is always directed along
the rotation axis. For a symmetric rigid body with
I1 ¼ I2, the angular momentum can be written as
the sum of longitudinal and transversal angular
momenta:

~L ¼ I3~x3 þ I1~x?: (2.3)

The projection plane is perpendicular to the ~e03
axis while the principal axis ~e03 of the projectile
describes the motion of the projectile in the RPP.
The attack vector, ~a, is located on the RPP and cor-
responds to a vector radius that extends from the
cut of the~e3 axis with the RPP to the point of inter-
section of~e3 with the same plane.

Starting with the Euler equation, it is possible to
determine the exact solution in particular cases

under certain approximations. Here, the procedure
is applied to the case of a projectile [4]:

~s ¼ _I~x þ I _~x þ ~X � I~x: (2.4)

A differential is obtained using Equation (2.3) for
small angles (i.e. cos h� 1) and letting a ¼ Aest [1]:

I2 _a � iL3 _a � la ¼ 0: (2.5)

The solution is

S± ¼ iI3x3±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4I2l� I23x

2
3

p
2I2

: (2.6)

Two types of solution are obtained for the above
equation in the case of a projectile.

� If the equation discriminant is positive, a com-
plex solution for S with a positive real part and
null imaginary part is obtained. This corresponds
to a function that grows indefinitely with time.
In conclusion, as the moment increases, the pro-
jectile rotates through p radian, resulting in the
tip moving backwards and the base moving in
the direction of motion. The motion thus
becomes unstable.

� If the equation discriminant is negative, then two
imaginary roots are obtained and the solution to
Equation (2.5) becomes

S± ¼ ik 1±dð Þ: (2.7)

where

k ¼ L3=ð2I2Þ and d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4lI2=L32

q
:

The more general solution to Equation (2.5) is

a ¼ ape
i xptþ/pð Þ þ ane

i xntþ/nð Þ, (2.8)

where the first term represents a rotating vector
having amplitude ap and angle xpt þ /p that varies
with time while it rotates around the centre of
gravity with slow circular motion at what is called
the precession angular velocity. The second term
represents another rotating vector of amplitude an
and angle xnt þ /n, which is in the extreme of the
ap vector, with a faster twist, presenting a circular
motion with what is called the nutation angular
frequency. There is more than one lap of the
second vector for each lap of the first vector. The
vector obtained by summing the first and second
vectors is therefore the attack vector ~a, which
rotates through an angle / as shown in Figure 1.
~a, therefore, determines the resulting motion of
the projectile tip and the epicyclic trajectory on the
RPP. The angle / does not coincide with the pre-
cession angle, except when the nutation
angle vanishes.
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The solutions of xp and xn are complex solu-
tions of the precession frequencies xp (Equation
(2.9)) and nutation (Equation (2.10)), with the con-
dition xp ! xn � xp where xp < xn: The equation
of motion of the gyroscopic movement is thus given
by Equation (2.5), for which the constants ap and an
correspond to complex numbers that are determined
from the initial conditions

xp ¼ k 1�dð Þ, (2.9)

xn ¼ kð1þ dÞ: (2.10)

As a consequence, stability of the projectile
demands that the discriminant of Equation (2.5)
must be negative; i.e. 4I2l� I23x

2
3 < 0 or

equivalently

Ss ¼ I23
4I2l

> 1: (2.11)

where Ss is referred to below as the gyroscopic sta-
bility coefficient. It is concluded from the above that
the projectile is stable if Ss ¼ I23x

2
3= 4I2lð Þ: This is to

say, a projectile is stable if its stability coefficient is
greater than 1, as will be shown experimentally. As
the projectile has gyroscopic motion, the precession
and nutation motions can be calculated experimen-
tally. Likewise, the value of the angle that corre-
sponds to the rotating vectors, having amplitudes ap
and an, respectively given by Equations (2.9) and
(2.10) for the limit h0 ! 0: The geometric
interpretation of the motion described by Equations
(2.9) and (2.10) allows the plotting of the projectile
tip motion (Figure 3). In the case of the projectile,
epicyclic motion appears only with apices facing
inwards. It is thus affirmed that the projectile tip
describes a gyroscopic motion, represented by a flat
curve in the RPPs (Figure 3), with apices facing
inwards, tangent to a sphere that has as its origin at
the projectile centre of gravity and a radius that is
the distance from the centre of gravity to the tip.
(The centre of gravity is located at one-third of the
projectile longitude from the base of the projectile,
as determined by the conical symmetry.)

Results

On the basis of previously developed theoretical
models [1], we obtained a set of results in gyroscope
and projectile experiments. In the case of a projec-
tile that we are dealing with here, an experimental
assembly is made for different parameters and dif-
ferent shooting distances, which are analyzed in the
following manner.

� The angles of precession and nutation are plotted
against the shooting distance in meters.

� Precession and nutation frequencies are deter-
mined from those plots.

� With information on ballistics taken from the
literature, the projectile rotation frequency and
aerodynamic coefficient are obtained for com-
parison of the theoretical torque with the experi-
mental torque [2].

� The number of loops per lap, given by N ¼
xn=xp, is calculated from the data in Table 1,
which were experimentally obtained for the
9-mm projectile. This definition is fulfilled by
both the gyroscope and projectile and the angu-
lar frequency between the fast and slow vectors.
The time between two amplitude maxima is
given by P ¼ 2p=xn, while the period for the
slow vector is P1 ¼ 2p=xp: From the experimen-
tal data, we calculate N ¼ 2d= 1�dð Þ only for
the projectile [3].

The stability coefficient given by Equation (2.11)
allows the determination of the docility given by
Equation (2.2). From the calculation of this para-
meter and using ballistic data obtained from the tech-
nical specifications of the gun and projectile and
measurements of the RPPs, the value of d is
estimated as d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1=Ss
p

: The determination
of the precession angle h yields x ¼ I3x= 2I2ð Þ,
l ¼ I23x

2= 4I2Ssð Þ: The step of the gun striation
n ¼ 2pv0=x according to Equation (2.4) (Figure 4).

To obtain the information needed to perform the
calculations using the aforementioned equations, it
is necessary to determine the attack angles of the
footprints left by the projectile on the RPPs, the
lengths of bullet holes, and the distance between

Figure 3. Graphical interpretation of the gyroscope solution.

Table 1. Dynamic quantities calculated from measurements
of the target.
Shooting
distance (m) Ss stability xp s�1ð Þ xn s�1ð Þ P (s) l (Nm)

1 1.20 572.389 2940.798 0.0024 0.582
2 1.29 964.135 2635.205 0.0023 0.526
3 2.39 407.817 3191.523 0.0024 0.458
4 1.99 298.031 3301.309 0.0022 0.621
5 2.05 553.498 3045.842 0.0026 0.699
6 1.77 772.265 2827.075 0.0029 0.602
7 1.91 638.573 2960.767 0.0028 0.557
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tangential points for different angles. With the data
obtained for the footprint direction and longitude
on the RPPs, the relationship between the longitude
and direction is established to determine the curve
with the profile of a real projectile and the separ-
ation of tangential points is measured for different
angles as shown in Figure 5. With this information,
we fit a curve to the data (Figure 6), where the vari-
ation in the projectile footprint with a variation in
the attack angle is seen, resulting in the explicit rela-
tion expressed by Equation (3.1). The curve in the
figure has a linear behaviour with the footprint data
given in millimetres. The relation is

aðLÞ ¼ 8:34L �ð81:97±0:01Þ, (3.1)

where L is the footprint length. The coefficient of
determination for this case affirms that Equation (3.1)
explains the variation in the nutation angle as a func-
tion of the footprint length in the RPP with a 99%
level of confidence (Figures 5 and 6). Using
Equation (3.1), the relation between the projectile
footprint measured in the RPP and the shooting dis-
tance is analyzed below.

In Table 1, P is the period between two consecu-
tive maxima while the torque l is calculated with
the stability coefficient and the factor d, whereas L3
is calculated with xp (percentage error of 5%).

The magnitudes of the precession and nutation
frequencies are adjusted to expected values with a
coefficient of determination that on average has an
81% level of confidence, as shown by the aero-
dynamic results obtained from the general test and
from the plots. The average value is obtained from
the analysis of 150 targets studied.

The deviations for non-controlled situations in
the quantitative analysis of the data recorded for the
target footprints relative to expected or theoretical
values are a consequence of environmental condi-
tions, such as the wind effect, and the time between
shots. This prevented the required stability of RPPs
from being fully achieved. Nevertheless, it is possible
to appreciate the damping of the projectile motion
from the relation of the nutation angle against the
shooting distance as shown in Figure 7.

To evaluate the results for the precession fre-
quency and stability, we considered solutions (2.9)
and (2.10) to the differential Equation (2.5) with

Figure 4. Dynamical axis of rotation and angles u, a and d
for the 9-mm projectile in flight.

Figure 5. Graphical determination of the rotation angle a
according to the tangent to the trajectory.

Figure 6. Nutation angle as a function of the footprint
length in the target.

Figure 7. Stability factor as a function of the shooting dis-
tance (9-mm calibre ammunition).
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parameter values fitted to the trajectory shown in
Figure 7. From the fitting curve, the gyroscopic sta-
bility factor for the barrel muzzle is obtained as
Ss x ¼ 0ð Þ ¼ �4:07 for the 9-mm calibre projectile
with an 89% level of confidence. This result is an
approximation of the dynamical stability under real
conditions, as seen in Figure 7, where the stability
factor is analyzed with respect to the shoot-
ing distance.

Further stability analysis is conducted for a dis-
tance ranging between 1m and 7m. The red curve
in Figure 7 has a trend similar to the theoretical
trend. Table 1 shows that the projectile is generally
stable, with the stability coefficient fluctuating
between 1.33 and 2.50, which is accepted for low-
calibre ammunition [5].

It is appropriate at this point to comment on the
experimental results relating to Table 1, where the
calculated dynamical quantities are given. The sta-
bility factor fits the theoretical predictions, as the
stability is greater than unity for subsonic projec-
tiles; i.e. has values between 1.20 and 2.39.
Moreover, Figure 7 shows that the factor Ss is pro-
portional to the square of the rotational speed of
the projectile, corresponding to the behaviour of a
projectile stabilized by rotation due to striation of
the weapon. This result agrees with theory that
establishes that projectiles without fins are generally
spin stable. However, the stability factor increases
for low-calibre projectiles, explaining the jump of
the curve in Figure 7. The results in Table 1 thus
suggest that the stability factor has a certain level at
3m and tends to oscillate with decreasing amplitude
from this distance until it approaches a constant
value with increasing distance, because there it is
still a nutation frequency, which vanishes at a dis-
tance of approximately 200m [3].

The following presents relations obtained in the
experiments. First, experimental Equation (3.2)
describes the relation of stability versus the shoot-
ing distance, where the values 1.99 and 2.13,
respectively, correspond to values of x that deter-
mine the amplitudes of oscillation, showing that
the curve fits the theoretical parameters [5] with
an 89% level of confidence. It is worth clarifying
that there is dynamical stability when Ss > 1 (the-
oretical value Ss > 1:33) while the graphical inter-
pretation of the aerodynamic jump between 1.00
and 2.50m suggests that this jump is due to the
chaotic nature of the motion at the beginning of
the trajectory (i.e. the ballistic wind). Therefore,
from (3.2), with x¼ 0, we obtain Ss ¼ �4:07,
which is in the expected range. After this event,
the projectile recovers its sinusoidal motion
around the centre of mass and must continue tan-
gent to the trajectory.

The relation of stability versus the shooting dis-
tance is

Ss xð Þ ¼ 1:96þ 57:44e�x=0:69 sin p
x�2:08
1:1

� �� �
(3.2)

Second, Figure 8 presents the adjusted curves for
the precession and nutation frequencies as functions
of the shooting distance. These angular motions
confirm that the centre of mass tends to follow the
precession and nutation movements that the pro-
jectile tip describes, as seen in Figure 1. The preces-
sion reaches a minimum when the nutation reaches
a maximum and vice versa as the shooting distance
with respect to the RPP varies. It is considered for
this experiment that the tip of the flying projectile is
in a state of low nutation that approximates it in a
small / to the horizontal plane. The relations of the
angular frequencies of nutation and precession with
the shooting distance in Figure 8 are respectively,

xn ¼ 3045:693þ 303:244 sin p
x�1:452
2:152

� �� �
(3.3)

xp ¼ 546:022þ 300:652 sin p
x�0:816
2:103

� �� �
(3.4)

A value of 3037.38 s�1 is read for the angular fre-
quency of nutation in contrast with the value of
554.27 s�1 for precession. The adjusted value for the
nutation frequency is 3054.01 s�1, in contrast with a
value of 537.77 s�1 for the precession frequency
with an 81% level of confidence. These results show
clearly that the slow circular motion corresponds to
the angular frequency of precession and the fast cir-
cular motion corresponds to the angular frequency
of nutation as is predicted by theory [5].
Additionally, Figure 8 shows a dependence of these
frequencies on the shooting distance due to stability.

Third, Figure 9 and Table 1 show that the oscilla-
tion period of the projectile remains between 0.0022
and 0.0029 s as the shooting distance varies. The

Figure 8. Nutation frequency (upper series) and precession
frequency (lower series) as functions of the shoot-
ing distance.
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periods for shooting distances between 1 and 3 m
are between 0.0024 and 0.0023 s, indicating that the
period is at an average amplitude of the curve and
therefore showing stability. After 4 m, the curve
destabilizes, suggesting that external factors affect
the experimental results. The relation between the
oscillation period and shooting distance is

P xð Þ ¼ 0:0023þ 6:3340sin2 p
x�2:6600
8:8190

� �� �
(3.5)

The oscillation period has a minimum value of
0.00225 s and a maximum value of 0.00234 s, with a
70% level of confidence according to the fit-
ting curve.

Finally, the relationship found between the
moment and shooting distance is shown in Figure 10.
The proposed model expressed by Equation (3.6)
explains with a 68% level of confidence the variation
in the torque as a function of the shooting distance.
The experimental fitted value for the moment is
0.497Nm, which is comparable to the theoretical
value of 0.473Nm [2]. The model thus explains the
theoretical and experimental behaviours with an error
of 5.07% approximately. The proposed model is

l xð Þ ¼ 0:484þ 0:196sin2 p
x�2:470
5:374

� �� �
(3.6)

It is interesting to examine the experimental
results of the torque–stability relationship, highlight-
ing that the variables are counterposed and that the
projectile is docile. Ss is, therefore, the solution to
differential Equation (2.5). We thus confirm the
exterior ballistics theorem [3] and the validity of
the experiment.

Conclusion

Through Riemann projection, the vector Euler equa-
tion was reduced to a nonlinear differential equation
of a single complex variable. This equation was
solved implementing the constant module approxi-
mation [1]. The obtained solution is the sum of two
vectors rotating on a complex plane. The vector
having the greatest magnitude rotates at lower angu-
lar velocity while the shorter vector rotates at higher
angular velocity. The speed of precession corre-
sponds to the speed of rotation of the vector of
greater magnitude, while the speed of nutation cor-
responds to the difference in speed between the
two vectors.

Analysis of the results of experiments designed
for a projectile revealed that, on the basis of the the-
ory and experimental data obtained from the projec-
tile’s footprint at the RPP (e.g. the length and
shape), for distances greater than 1m, the same

obliquity characteristics are found regardless of the
distance or direction of the shot.

Analysis of the curves of the frequencies of nuta-
tion and precession described the arrival of the pro-
jectile at the target and determined the trajectory
through the target, whether it be ascending,
descending, or level, as shown in Figure 8. The pro-
posed methodology contrasts with methods used
commonly in certain areas; i.e. judicial procedures
that conclude the origin of the shot from the direc-
tion provided by the contusion are a priori results.

Physical and mathematical descriptions of the
projectile movement, in general terms, present cer-
tain difficulties, because motion descriptions corres-
pond to complex differential equations whose
solution is determined by environmental conditions.
The simplified solution of these equations depends
on gyroscopic movement, the phenomenon of drift
and re-elevation.

The nutation angle and precession in RPPs were
measured to quantify the gyroscopic stability in the
aerodynamic model of a 9-mm calibre projectile.

Figure 9. Oscillation period as a function of the shoot-
ing distance.

Figure 10. Torque as a function of the shooting distance.
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Experimental data were plotted with respect to the
shooting distance, with coefficients of determination
ranging between 0.68 and 0.87. These values indi-
cate the explanatory capacity of the fit correspond-
ing to Equation (3.2) and characterize a projectile at
a target.

The experimental data and the calculations made
for the 9-mm calibre projectile reveal that the number
of rotations per nutation cycle is a linear function of
the ratio between the precession and nutation veloc-
ities and the average angle of inclination of the pro-
jectile axis. This finding agrees with the literature on
external ballistics and the results of previous work [1].

When single-projectile impacts are presented,
it is necessary to determine the direction of
arrival and other possible factors to reconstruct
events for the purposes of judicial investigation.
The nutation and precession movements are not
observable empirically from the projectile foot-
print because these movements cannot be regis-
tered using high-speed cameras or computer
software. The analysis conducted in this work is
applicable to the relation of the shooting distance
versus the Euler angle.

Meanwhile, evidence relating to the contusion line,
the distribution of embedded powder grains and black
smoke are criteria only used for detonations made at
close distance. At larger distances, the direction of
entry into the target is determined by the shape that
suggests the obliquity of the entrance of the projectile
to the surface of impact. These criteria must be re-
evaluated because distances greater than 1m have the
same characteristics of obliquity in the contusion
because the phenomena of nutation and precession
generate the same shapes of entry in the target for dif-
ferent distances and directions (Figure 8).
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